



# BrightSource Energy, Inc.

**An Overview** 





A Presentation To The:

Air & Waste Management Association Mother Lode Chapter

# The Role of Solar Thermal Power in California's Energy Future

### BrightS@urceEnergy

March 5, 2009

**Proprietary & Confidential** 







# The Role of Solar Thermal Power in California's Energy Future

Well, to be honest, we really don't have a clue...

So instead, we'll discuss BrightSource Energy, the LPT solarthermal technology, its relative market position to other technologies, environmental challenges, and stuff like that.

# BrightS@urceEnergy





### Topics:

- BrightSource Energy
  - An Overview
- Market Background
- Technology Overview
- Ivanpah SEGS Development Overview
- Pilot Plant







# BrightSource Energy – An Overview:

- **Mission:** Become the world's leading builder, developer, operator and owner of solar energy projects.
  - **Business:** Develop large-scale solar power generation projects based on power purchase agreements (PPAs) with electric utilities and large industrial / commercial consumers of electricity.
    - Solar-Thermal LPT: Superior technology; lower cost higher efficiency, utility-class system design.
    - Experienced, Accomplished Management Team: Subsidiary Luz II, engineer / developer of 350MW of California solar-thermal energy plants (1980's and 90's).
    - Backed by Premier Venture Capital Firms: VantagePoint, Morgan Stanley, Draper Fisher Jurvetson, JP Morgan, Babcock & Brown and Chevron Technology Ventures.
    - Headquartered in Oakland, California. Luz II (BSI) subsidiary located in Jerusalem, Israel





PROVEN LEADERSHIP in SOLAR ENERGY





# Market Background

**USA** 1999 Harrison Street, Suite 500, Oakland, California 94612, Tel. (510) 550 8161, Fax. (510) 550 8165 **www.BrightSourceEnergy.com ISRA**EL 11 Kiryat Mada St., Har Hotzvim, P.O.Box 45220, Jerusalem 91450, Tel. +972 77 202 5000, Fax. +972 2 571 1059 **www.luz2.com** 





#### Solar Power Market Dynamics



Effect of CO<sup>2</sup> regulations on cost of power







#### **US Solar Radiation Map**







#### **California Renewables Market**



Sources: California Energy Commission and North American Electric Reliability Council

**Notes:** Total US renewables market is more than 1½ times the size of the California renewables market. European renewables market is as big as the US renewables market Asian renewables market, with focus on India and China, is 2-4 times the US renewables market. Potential total renewables market: US = 25GW, EU = 25GW, Asia = 75GW, World = 125GW. Addressable market for central solar power @ \$2K/KW: US = \$50B, World = \$250B.





# Principal Solar Thermal Competition

| TECHNOLOGY                        | COMPANY                               | ADVANTAGES/DISADVANTAGES                                                                                                                                                       |  |
|-----------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parabolic Troughs                 | Solel (Israel)                        | Company manufactures tubes for troughs, prove<br>technology, less efficient, higher capital co                                                                                 |  |
| Parabolic Troughs                 | Solar Millennium<br>(Germany)         | Proven technology but less efficient and more<br>costly, more project development experience                                                                                   |  |
| Parabolic Troughs                 | Acciona / Solargenix<br>(Spain)       | Proven technology but less efficient and more<br>costly, new plants in Nevada and Spain, well<br>financed                                                                      |  |
| Parabolic Troughs<br>Power Towers | Abengoa / Solucar<br>(Spain)          | Trough technology but less efficient and more<br>costly, new trough plant and new 11MW power<br>tower in Spain, financially strong, power tower<br>design inherently expensive |  |
| Power Towers                      | Rocketdyne (US)                       | Technology provider, will work with development companies to develop projects                                                                                                  |  |
| Distributed Power Towers          | BrightSource Energy<br>(US)           | Proven technology that is more efficient and less costly, strong project development team, solid financing                                                                     |  |
| Stirling Engines                  | Stirling Energy (US)                  | Direct power production, must demonstrate scale-<br>up, cost of O&M may be issue                                                                                               |  |
| Solar Thermal Start-Ups           | Ausra and various other new companies | Various potential issues including technology, project development experience, and financing                                                                                   |  |





# Technology Comparison – Solar Trough / LPT: ("LPT" Formerly referred to as "DPT")

|                                                     |                      | DPT 550 |                                                    |                                   |   | DPT 650 |                                                |                                   |  |
|-----------------------------------------------------|----------------------|---------|----------------------------------------------------|-----------------------------------|---|---------|------------------------------------------------|-----------------------------------|--|
|                                                     | <u>NEW</u><br>TROUGH | DPT     | <u>Delta to</u><br>550 <u>NEW</u><br><u>TROUGH</u> | <u>Percentage</u><br><u>Delta</u> | D | PT 650  | <u>Delta to</u><br><u>NEW</u><br><u>TROUGH</u> | <u>Percentage</u><br><u>Delta</u> |  |
| Performance Data                                    |                      |         |                                                    |                                   |   |         |                                                |                                   |  |
| Assumed Direct Normal Radiation on Site (MBTU/m²/y) | 9.4                  | 9.4     | L .                                                |                                   |   | 9.4     |                                                |                                   |  |
| <u>Solar Field</u>                                  |                      |         |                                                    |                                   |   |         |                                                |                                   |  |
| Thermal Output (MBTU/m <sup>2</sup> /y)             | 4.1                  | 4.6     | 5 Ω5                                               |                                   |   | 5       | 0.9                                            |                                   |  |
| Temperature Deg F                                   | 750                  | 102     | 0 270                                              |                                   |   | 1110    | 360                                            |                                   |  |
| Pressure PSI                                        | 1800                 | 235     | 0 550                                              |                                   |   | 3900    | 2100                                           |                                   |  |
| Power Block                                         |                      |         |                                                    |                                   |   |         |                                                |                                   |  |
| Gross Heat Rate (BTU/kWh)@1.00% load                | 8500                 | 810     | 0 -400                                             | -4.71%                            |   | 7300    | -1200                                          | -14.12%                           |  |
| Gross Electrical Output (kWh/m <sup>2</sup> /y)     | 458                  | 54      | ) 81                                               | 17.74%                            |   | 651     | 192                                            | 42.00%                            |  |
| Sclar Field Parasitics (KWh/m²/y)                   | 37                   | 0       | -37                                                | -100.00%                          |   | 0       | -37                                            | -100.00%                          |  |
| Power Block Parasitics (kWh/m²/y)                   | 23                   | 32      | 9                                                  | 41.28%                            |   | 39      | 16                                             | 70.40%                            |  |
| Net Electrical Output (KWh/m <sup>2</sup> /y)       | 399                  | 50      | 7 108                                              | 27.21%                            |   | 612     | 213                                            | 53.42%                            |  |
| Relative Capital Costs                              |                      |         |                                                    |                                   |   |         |                                                |                                   |  |
| Total System                                        |                      |         |                                                    |                                   |   |         |                                                |                                   |  |
| Sclar Field \$/m^2                                  | 100%                 | 705     | 6                                                  |                                   |   | 60%     |                                                |                                   |  |
| Power Block \$/Kw                                   | 100%                 | 100     | %                                                  |                                   |   | 100%    |                                                |                                   |  |
| Capacity Factor                                     | 24%                  | 28      | 6                                                  |                                   |   | 32%     |                                                |                                   |  |
| Relative Energy Costs                               | 100%                 | 70      | 6                                                  |                                   |   | 60%     |                                                |                                   |  |





PROVEN LEADERSHIP in SOLAR ENERGY





# **Technology Overview**

**USA** 1999 Harrison Street, Suite 500, Oakland, California 94612, Tel. (510) 550 8161, Fax. (510) 550 8165 **www.BrightSourceEnergy.com ISRA**EL 11 Kiryat Mada St., Har Hotzvim, P.O.Box 45220, Jerusalem 91450, Tel. +972 77 202 5000, Fax. +972 2 571 1059 **www.luz2.com** 







## **Principal Solar Thermal Technologies**







#### **Distributed Power Towers (LPT 550)**







#### LPT – Technology Schematic







#### LPT 550 Solar Power Field



**Proprietary and Confidential** 





PROVEN LEADERSHIP in SOLAR ENERGY





# Ivanpah SEGS Development Overview

**USA** 1999 Harrison Street, Suite 500, Oakland, California 94612, Tel. (510) 550 8161, Fax. (510) 550 8165 **www.BrightSourceEnergy.com ISRA**EL 11 Kiryat Mada St., Har Hotzvim, P.O.Box 45220, Jerusalem 91450, Tel. +972 77 202 5000, Fax. +972 2 571 1059 **www.luz2.com** 





#### **Project Characteristics – Ivanpah SEGS**

- 400MW Utility Class, Solar-Thermal Complex
- Ivanpah Solar Electric Generating System ("SEGS") Three discrete plants:
  - Ivanpah 1 110MW (PG&E)
  - Ivanpah 2 110MW
  - Ivanpah 3 220MW (PG&E)
- COD: For Discussion
- "Dry Cooling" Technology: Reduces plant water demand to a minimum level.





#### Location – Ivanpah Dry Lake



Proprietary & Confidential





# Project Status -

- CEC / BLM Joint Process CEQA, NEPA;
  AFC process CEC taking lead on environmental analysis
- CEC "Data Adequate":
- CEC / BLM Workshops/data analysis:
- Preliminary Staff Assessment (PSA):
- Final Staff Assessment / Draft EIS:
- EPC Contractor Pre-quals:
- Turbine Order Placement
- Interconnect Requests

October 2007 In process

August 08 June 09

In process 2Q08 In process





# Illustration of Ivanpah SEGS (1 of 3)







# Illustration of Ivanpah SEGS (2 of 3)







# Illustration of Ivanpah SEGS (3 of 3)









#### 400MW Ivanpah Solar Power Complex



Complex will provide enough power for 250,000 homes, and reduce CO<sup>2</sup> by >500,000 TPY





#### LPT Technical Description – Ivanpah 2

- Solar Technology: LPT 550
  - Steam Generated at: 175 bar, 395°C
  - Steam Superheat: 543°C
  - Steam Reheat: 483°C
- Size : 110 MW nominal
  - Reheat Condensing Steam Turbine Generator
  - Dry Cooling
  - Makeup Water Demand: 20 acre-ft/yr
  - Heliostats: 55k (approx)
- Proposed Interconnect: SCE
  - Mountain Pass Eldorado Line 115kV (230kV)





PROVEN LEADERSHIP in SOLAR ENERGY





# PILOT PLANT

**USA** 1999 Harrison Street, Suite 500, Oakland, California 94612, Tel. (510) 550 8161, Fax. (510) 550 8165 **www.BrightSourceEnergy.com ISRA**EL 11 Kiryat Mada St., Har Hotzvim, P.O.Box 45220, Jerusalem 91450, Tel. +972 77 202 5000, Fax. +972 2 571 1059 **www.luz2.com** 





# **PILOT Plant Objectives**

- Demonstrate, on a reduced scale, LPT-550 technology performance
- Provide a facility to run a complete test program for system evaluation and improvements.
- Principal Objective: To produce superheated steam at same temperature and pressure as for the full scale 110 MW Power Plant (540 deg.C; 1750 Bar).





#### **PILOT Project Overview**

- Three Main sub-systems
  - Boiler
  - Water/Steam cycle
  - Solar Field (Heliostat Array)

#### Disciplines involved:

- Site Development / Access
- Civil / Structural (Tower 60 m)
- Electrical (Solar Field Controls Balance of Plant)
- Piping (primarily at the tower facility)
- System Controls





# **PILOT Plant Technical Data**

- Heliostats Reflecting Area: ~ 12,000 m2
- Number of Heliostats: 1641
- Heliostat Dimensions: 2.25m x 3.21m
- Reflecting area per Heliostat: 7.2 m2
- Distance between rows of Heliostats: 4.2 m 10 m
- Tower Height: 60 m (+ 15m Receiver)
- Thermal Energy on receiver: 4.5 /6 MWth





# Pilot Plant – Artists Concept







#### **PILOT Layout: Rotem Industrial Park**







# Solar Tower Foundation and First Segments (01/2008)







# First Mast Installation (09/18/2007)





























